
期刊简介
中华医学会主办。本刊主要刊载神经医学的新理论、新进展、新技术、新业务等,内容涵盖神经外科、神经内科以及神经生物等基础神经科学领域。本刊设置的主要栏目有基础研究、临床研究、专家论坛、国际动态、短篇论著、经验交流、病例报告、综述等,目前已成为展示和共享我国神经科学领域学术成就和科研成果的重要载体和平台。杂志迄今已被美国《化学文摘(CA)》、俄罗斯《文摘杂志(AJ)》、《中文核心期刊要目总览》、《中国科技论文统计源期刊(中国科技核心期刊)》、《中国科学引文数据库》等国内外数据库和检索机构收录。
医学论文统计方法当中假设检验的应用建议
时间:2024-02-26 10:47:13
假设检验是统计学中常用的一种方法,用于根据样本数据对所提出的假设进行推断。下面是一个关于高血压药物效果的假设检验的例子。
研究问题:一种新型高血压药物(药物A)是否比传统药物(药物B)更有效地降低患者的收缩压?
假设:
无效假设(H0):新型药物A与传统药物B在降低收缩压方面没有显著差异。
备择假设(H1):新型药物A比传统药物B更有效地降低收缩压。
实验设计:
随机选择100名高血压患者,分为两组,每组50人。
组1接受新型药物A治疗,组2接受传统药物B治疗。
经过一个固定周期(如4周)的治疗后,测量并记录每组患者的收缩压。
数据分析:
计算每组的平均收缩压降低值(治疗前后差值)。
使用独立样本t检验来比较两组的平均收缩压降低值是否有显著差异。
结果:
组1(药物A)的平均收缩压降低了15 mmHg。
组2(药物B)的平均收缩压降低了10 mmHg。
t检验的p值为0.03。
结论:
由于p值(0.03)小于通常的显著性水平(如0.05),我们拒绝无效假设H0,接受备择假设H1。
这意味着有统计学证据表明新型药物A在降低收缩压方面比传统药物B更有效。
需要注意的是,这里的p值、样本量和效果大小都是假设的,仅用于说明假设检验的基本原理和步骤。在实际研究中,这些数值会根据实际数据而变化,并且还需要考虑其他因素,如实验的随机性、样本的代表性以及潜在的偏差等。此外,在解释结果时,还需要结合临床意义和实际情境进行综合考虑。